Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Biosci. j. (Online) ; 37: e37002, Jan.-Dec. 2021. ilus, graf
Article in English | LILACS | ID: biblio-1358449

ABSTRACT

Mesenchymal stem cells (MSCs), obtained from several anatomical sites, have already been described, characterized and used in therapeutic models for tissue repair. The umbilical cord mesenchymal stem cells, represented by cells from arteries and veins walls, as well as Wharton's jelly are easy to be obtained, highly available, require no invasive procedure, do not present risk to donors and do not present ethical limitation. The aim of this research was to analyze the plasticity of Wharton's jelly mesenchymal stem cells (WJ-MSCs) of goat, evaluating their behavior in vitro and characterizing them immunophenotypically. Thus, tests were performed on colony forming units, viability and cell growth curve, flow cytometry analysis and plasticity potential. Goat umbilical cord matrix cells exhibited fibroblastoid morphology with colony formation and self-renewal ability, always maintaining their undifferentiated state up to the eighth passage (P8). The growth curve kinetics exhibited the LAG, LOG, and DECAY phases, without displaying a PLATEAU phase. The plasticity assay demonstrated positive differentiation for osteogenic, adipogenic and chondrogenic lines, characterized by the synthesis of intracytoplasmic granules or extracellular matrix with the presence of calcium, lipids and proteoglycans. Flow cytometry demonstrated the expression of CD90 and CD105; absence of CD14 expression. It is concluded that the cell population isolated from the Wharton's jelly of goat constitutes a representative sample of mesenchymal stem cells, with great possibilities in the field of regenerative and reproductive medicine.


Subject(s)
Mesenchymal Stem Cells , Cell Plasticity , Flow Cytometry
2.
Journal of Lipid and Atherosclerosis ; : 124-139, 2020.
Article in English | WPRIM | ID: wpr-786077

ABSTRACT

Vascular smooth muscle cells (VSMCs) play a pivotal role in the stability and tonic regulation of vascular homeostasis. VSMCs can switch back and forth between highly proliferative (synthetic) and fully differentiated (contractile) phenotypes in response to changes in the vessel environment. Abnormal phenotypic switching of VSMCs is a distinctive characteristic of vascular disorders, including atherosclerosis, pulmonary hypertension, stroke, and peripheral artery disease; however, how the control of VSMC phenotypic switching is dysregulated under pathological conditions remains obscure. Canonical transient receptor potential (TRPC) channels have attracted attention as a key regulator of pathological phenotype switching in VSMCs. Several TRPC subfamily member proteins—especially TRPC1 and TRPC6—are upregulated in pathological VSMCs, and pharmacological inhibition of TRPC channel activity has been reported to improve hypertensive vascular remodeling in rodents. This review summarizes the current understanding of the role of TRPC channels in cardiovascular plasticity, including our recent finding that TRPC6 participates in aberrant VSMC phenotype switching under ischemic conditions, and discusses the therapeutic potential of TRPC channels.


Subject(s)
Atherosclerosis , Cell Plasticity , Homeostasis , Hypertension, Pulmonary , Muscle, Smooth, Vascular , Peripheral Arterial Disease , Phenotype , Plastics , Rodentia , Stroke , Transient Receptor Potential Channels , Vascular Remodeling
3.
International Journal of Stem Cells ; : 1-7, 2019.
Article in English | WPRIM | ID: wpr-764066

ABSTRACT

The slow progress in clinical applications of stem cells and the bewildering mechanisms involved have puzzled many researchers. Recently, the increasing evidences have indicated that cells have superior plasticity in vivo or in vitro, spontaneously or under extrinsic specific inducers. The concept of stem cells may be challenged, or even replaced by the concept of cell plasticity when cell reprogramming technology is progressing rapidly. The characteristics of stem cells are manifestations of cellular plasticity. Incorrect understanding of the concept of stem cells hinders the clinical application of so-called stem cells. Understanding cellular plasticity is important for understanding and treating disease. The above issues will be discussed in detail to prove the reconceptualization of stem cells from cellular plasticity.


Subject(s)
Cell Plasticity , Cellular Reprogramming , In Vitro Techniques , Plastics , Stem Cells
4.
Experimental Neurobiology ; : 155-170, 2018.
Article in English | WPRIM | ID: wpr-714912

ABSTRACT

Astrocytes are the most abundant cell type in the brain and they make close contacts with neurons and blood vessels. They respond dynamically to various environmental stimuli and change their morphological and functional properties. Both physiological and pathological stimuli can induce versatile changes in astrocytes, as this phenomenon is referred to as ‘astrocytic plasticity’. However, the molecular and cellular mechanisms of astrocytic plasticity in response to various stimuli remain elusive, except for the presence of hypertrophy, a conspicuous structural change which is frequently observed in activated or reactive astrocytes. Here, we investigated differential characteristics of astrocytic plasticity in a stimulus-dependent manner. Strikingly, a stab wound brain injury lead to hypertrophy of astrocytes accompanied by increased GABA expression and tonic GABA release in mouse CA1 hippocampus. In contrast, the mice experiencing enriched environment exhibited astrocytic hypertrophy with enhanced proBDNF immunoreactivity but without GABA signal. Based on the results, we define proBDNF-positive/GABA-negative hypertrophic astrocytes as ‘active’ astrocytes and GABA-positive hypertrophic astrocytes as ‘reactive’ astrocytes, respectively. We propose for the first time that astrocytic proBDNF can be a bona fide molecular marker of the active astrocytes, which are distinct from the reactive astrocytes which show hypertrophy but with aberrant GABA.


Subject(s)
Animals , Mice , Astrocytes , Blood Vessels , Brain , Brain Injuries , Cell Plasticity , gamma-Aminobutyric Acid , Hippocampus , Hypertrophy , Neurons , Plastics , Wounds and Injuries , Wounds, Stab
5.
Biol. Res ; 50: 4, 2017.
Article in English | LILACS | ID: biblio-838961

ABSTRACT

Abstract Background Macrophages are a functionally heterogeneous cell population and depending on microenvironments they polarize in two main groups: M1 and M2. Glutamic acid and glutamate receptors may participate in the regulation of macrophage plasticity. To investigate the role of glutamatergic systems in macrophages physiology, we performed the transfection of mGluR5 cDNAs into RAW-264.7 cells. Results Comparative analysis of modified (RAW-mGluR5 macrophages) and non-modified macrophages (RAW-macrophages) has shown that the RAW-mGluR5 macrophages absorbed more glutamate than control cells and the amount of intracellular glutamate correlated with the expression of excitatory amino acid transporters -2 (EAAT-2). Besides, our results have shown that RAW-mGluR5 macrophages expressed a higher level of peroxisome proliferator-activated receptor γ (PPAR-γ) and secreted more IL-10, high mobility group box 1 proteins (HMGB1) and Galectin-3 than control RAW-macrophages. Conclusions We propose that elevation of intracellular glutamate and expression of mGluR5 may initiate the metabolic rearrangement in macrophages that could contribute to the formation of an immunosuppressive phenotype.


Subject(s)
Animals , Mice , Receptor, Metabotropic Glutamate 5/physiology , Cell Plasticity/physiology , Macrophages/physiology , Phenotype , Enzyme-Linked Immunosorbent Assay , Transfection/methods , Cells, Cultured , Lipopolysaccharides , Blotting, Western , Interleukin-10/analysis , Interleukin-10/metabolism , Glutamic Acid/analysis , Glutamic Acid/metabolism , HMGB1 Protein/analysis , HMGB1 Protein/metabolism , Galectin 3/analysis , Galectin 3/metabolism , PPAR alpha/analysis , PPAR alpha/metabolism , RAW 264.7 Cells , Nitric Oxide/metabolism
6.
Clinical Psychopharmacology and Neuroscience ; : 170-176, 2017.
Article in English | WPRIM | ID: wpr-203964

ABSTRACT

OBJECTIVE: In bipolar disorder, serum brain-derived neurotrophic factor (BDNF) level decreases leading to dysfunctions of critical neurotrophic, cellular plasticity and neuroprotective processes. The present study was conducted to evaluate the change in serum BDNF level with oxcarbazepine monotherapy in bipolar mania. METHODS: The present study is a prospective, interventional, open label clinical study conducted on 25 patients of bipolar mania and 25 healthy controls. Detailed history, clinical evaluation including Young Mania Rating Scale (YMRS) scoring and serum BDNF were assessed at baseline for all 50 subjects. The bipolar patients were prescribed tablet oxcarbazepine and followed up after 4 weeks for clinical evaluation and re-estimation of serum BDNF and YMRS scoring. RESULTS: The serum BDNF level in bipolar manic patients were compared with healthy controls at baseline and results revealed that there is a significant reduction (p=0.002) in serum BDNF level in bipolar patients. At follow-up after 4 weeks, the mean change in serum BDNF in bipolar group who were on oxcarbazepine monotherapy was found statistically significant (p=0.02) in comparison to healthy controls. In bipolar group, the YMRS score and serum BDNF at baseline have an inverse relation(r=−0.59) whereas change of the YMRS score had a positive correlation (r=0.67) with the change of serum BDNF over 4 weeks. CONCLUSION: In bipolar mania serum BDNF level is low and it is found to be increased with short term monotherapy with oxcarbazepine.


Subject(s)
Humans , Bipolar Disorder , Brain , Brain-Derived Neurotrophic Factor , Cell Plasticity , Clinical Study , Follow-Up Studies , Prospective Studies
7.
Acta cir. bras ; 31(1): 59-66, Jan. 2016. graf
Article in English | LILACS | ID: lil-771849

ABSTRACT

PURPOSE: To describe a new technique for isolation of a mesenchymal stem cells (MSCs) population from the olfactory mucosa in rabbits. METHODS: Olfactory stem cells (OSCs) were retrieved from under the cribriform plate of the Ethmoid bone. Several assays were accomplished to characterize the cell population and attest its viability in vitro. The cells were submitted to flow cytometry with the antibodies CD34, CD45, CD73, CD79, CD90 and CD105 and also they were induced to differentiate in three lineages. Functional evaluation involved analysis of in vitro growth behavior, colony forming unit like fibroblasts (CFU-f) and cryopreservation response. Further transduction with Green Fluorescent Protein (GFP) was also performed. RESULTS: The OSCs showed mesenchymal features, as positive response to CD34, CD73 and CD90 antibodies and plasticity. Additionally, these cells have high proliferated rate, and they could be cultured through many passages and kept the ability to proliferate and differentiate after cryopreservation. The positive response to the transduction signalizes the possibility of cellular tracking in vivo. This is a desirable feature in case those cells are used for pre-clinical trials. CONCLUSION: The cells harvested were mesenchymal stem cells and the technique described is therefore efficient for rabbit olfactory stem cells isolation.


Subject(s)
Animals , Rabbits , Cell Separation/methods , Mesenchymal Stem Cells/cytology , Olfactory Mucosa/cytology , /physiology , /physiology , Thy-1 Antigens/physiology , Cells, Cultured , Colony-Forming Units Assay , Cryopreservation , Cell Differentiation/physiology , Cell Plasticity/physiology , Cell Proliferation/physiology , Ethmoid Bone/cytology , Flow Cytometry , Green Fluorescent Proteins/metabolism , Olfactory Mucosa/growth & development
8.
Neotrop. ichthyol ; 14(2): e150187, 2016. tab, graf
Article in English | LILACS | ID: lil-785082

ABSTRACT

Muchos peces carácidos sudamericanos desarrollan protuberancias dérmicas reversibles en las mandíbulas para optimizar la respiración acuática superficial (RAS) durante la hipoxia. Actualmente, aspectos básicos de esta adaptación permanecen desconocidos, principalmente debido a la escasez de estudios experimentales. En experiencias de laboratorio, determinamos el tiempo necesario para el desarrollo y la reversión completos de estas estructuras en Piaractus mesopotamicus , y estudiamos comparativamente respuestas conductuales, morfológicas, y respiratorias en un gradiente de concentración de oxígeno disuelto (OD). Los cambios morfológicos durante la hipoxia consistieron en protuberancias dérmicas del labio inferior, el borde anterior del maxilar, y el borde distal de la válvula opercular, incrementando el número conocido de estructuras modificadas. Éstas se desarrollaron completamente en menos de 6 horas y se revirtieron en menos de 3 horas. La mayoría de los rasgos observados siguieron una curva de respuesta logística, con valores críticos entre 0,90 y 2,70 mgL-1 de OD. La frecuencia respiratoria y el desarrollo de la válvula opercular presentaron valores críticos similares ubicados por encima del nivel de tolerancia al OD, mientras que la RAS y las protuberancias dérmicas mandibulares presentaron críticos por debajo de dicho nivel. Estas observaciones apoyan la relación funcional existente entre estos grupos de rasgos conductuales y morfológicos. Este estudio demuestra que esta especie puede modificar reversiblemente porciones del sistema respiratorio para optimizar las respuestas a la hipoxia.


Many South American characid fishes develop reversible dermal protuberances in the jaws to optimize aquatic surface respiration (ASR) during hypoxia. To date, basic aspects of this adaptation remain unknown, mainly due to the scarcity of experimental studies. In laboratory experiments, we determined time necessary for the complete formation and reversion of these structures in Piaractus mesopotamicus , and studied comparatively behavioral, morphological, and respiratory responses along gradients of dissolved oxygen (DO) concentration. Morphological changes during hypoxia consisted in dermal protuberances of lower lip, anterior border of maxillary and distal border of opercular valve, increasing the known number of structures modified. These structures developed completely in less than 6 hours and reversed in less than 3 hours. Most of observed traits showed a logistic response curve with threshold DO values between 0.90 and 2.70 mgL-1. Respiratory frequency and opercular valve development showed similar threshold values above the level of tolerance of DO, whereas ASR and dermal protuberances of the jaws showed threshold values below this level. This observation supports the functional link between these groups of behavioral and morphological traits. This study demonstrates that this species is able to modify reversibly portions of the respiratory system to optimize responses to hypoxia.


Subject(s)
Animals , Characiformes/growth & development , Characiformes/genetics , Cell Hypoxia/genetics , Cell Plasticity/genetics
9.
Braz. j. med. biol. res ; 48(8): 665-675, 08/2015. graf
Article in English | LILACS | ID: lil-753050

ABSTRACT

Neutrophils are widely known as proinflammatory cells associated with tissue damage and for their early arrival at sites of infection, where they exert their phagocytic activity, release their granule contents, and subsequently die. However, this view has been challenged by emerging evidence that neutrophils have other activities and are not so short-lived. Following activation, neutrophil effector functions include production and release of granule contents, reactive oxygen species (ROS), and neutrophil extracellular traps (NETs). Neutrophils have also been shown to produce a wide range of cytokines that have pro- or anti-inflammatory activity, adding a modulatory role for this cell, previously known as a suicide effector. The presence of cytokines almost always implies intercellular modulation, potentially unmasking interactions of neutrophils with other immune cells. In fact, neutrophils have been found to help B cells and to modulate dendritic cell (DC), macrophage, and T-cell activities. In this review, we describe some ways in which neutrophils influence the inflammatory environment in infection, cancer, and autoimmunity, regulating both innate and adaptive immune responses. These cells can switch phenotypes and exert functions beyond cytotoxicity against invading pathogens, extending the view of neutrophils beyond suicide effectors to include functions as regulatory and suppressor cells.


Subject(s)
Humans , Adaptive Immunity/immunology , Cell Plasticity/immunology , Immunomodulation/immunology , Neutrophil Activation/immunology , Neutrophils/physiology , Immune System Diseases/immunology , Inflammation/immunology , Neoplasms/immunology , Neutrophils/immunology
10.
Rev. bras. ciênc. vet ; 21(3): 143-149, jul.-set. 2014. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1491583

ABSTRACT

The bone marrow is the largest reserve of stem cells into the body, consisting of stromal cells/mesenchymal niches and hematopoietic system. These cells can differentiate as different lineages as osteogenic, chondrogenic and adipogenic. The bone marrow stem cells population has widely used and an attractive target for potential therapeutic treatment for ple-clinical trials, due its high plasticity of differentiation. Thus, with this review we aimed to show an overview of stem cells and mainly bone marrow cells with basic concepts, as well as their potential new venues for treatment in regenerative veterinary medicine.


A medula óssea é a maior reserva de células-tronco do corpo, cujo consistem em células mesenquimais e hematopoiéticas. Estascélulas têm a capacidade de diferenciar-se em varias linhagens, como osteogênicas, condrogênicas e adipogênicas. A populaçãode células-tronco derivadas da medula óssea tem sido um alvo atraente para tratamentos terapêuticos e ensaios pré-clínicos,devido sua elevada plasticidade e capacidade de diferenciação. Assim, esta revisão objetiva mostrar uma visão geral das célulastroncoe principalmente conceitos básicos sobre as células da medula óssea, bem como os seus potenciais e novos espaços parao tratamento regenerativo na medicina veterinária.


Subject(s)
Animals , Mesenchymal Stem Cells , Veterinary Medicine/trends , Bone Marrow , Cell Plasticity
SELECTION OF CITATIONS
SEARCH DETAIL